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GPU support in HYPRE

GPU support has been available in recent releases of HYPRE
enabled by various approaches including CUDA, OpenMP 4.5, RAJA, Kokkos

Structured multigrid solvers: SMG, PFMG
Structured data types: grid, box, stencil, struct matrix and vector...
Computations are performed in BoxLoops
Completely ported to GPUs, MG setup and solve, in GPU device memory

Unstructured algebraic multigrid: BoomerAMG
Unstructured data types: ParCSR matrices, Parvectors, ...
Solve phase has been ported: MATVEC, vector operations, and appropriate
relaxations run on GPUs with unified memory
Setup phase: performed on CPUs with unified memory
Current focus: AMG setup phase on GPUs
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Structured interface of HYPRE

Provides access to the structured solvers: SMG, PFMG, ...
Struct grid is composed of boxes

(-3,2)


(6,11)


(7,3)
 (15,8)


Index Space


Struct matrix and vector sit on top of struct grid
Struct computations are performed via BoxLoops
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HYPRE loop abstraction for computations: BoxLoops

Example: y := αy, y is a struct vector
1 hypre_ForBoxI (i, boxes ) {
2 ...
3 hypre_BoxLoop1Begin (dim , loop_size , data_box , start , unit_stride ,

yi);
4 [# pragma omp parallel for private (yi)]
5 hypre_BoxLoop1For (yi) {
6 yp[yi] *= alpha ;
7 }
8 hypre_BoxLoop1End (yi);
9 }
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Different ideal memory access patterns

CPU: coarse-grained parallelism GPU: fine-grained parallelism
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GPU BoxLoops have the same interface as the CPU ones

Offload the OMP parallel region to GPU: with CUDA or OpenMP 4.5
1 # define hypre_BoxLoop1Begin (ndim ,loop_size ,dbox1 ,start1 ,stride1 ,i1) {\
2 /* host code : */ \
3 hypre_BoxLoopDeclareInit (ndim , loop_size ) \
4 hypre_BoxKDeclareInit (1, start1 ,dbox1 , stride1 ) \
5 /* device code ( CUDA ): */ \
6 BoxLoopforall ( hypre_exec_policy ,tot , HYPRE_LAMBDA ( HYPRE_Int idx) {
7 hypre_BoxLoopSet1 (i1)

1 /* device code ( OMP4 .5) : */ \
2 _Pragma (omp target teams distribute parallel for) \
3 for ( thread =0; thread <tot; thread ++) {\
4 hypre_BoxLoopSet1 (i1)

also available with RAJA or Kokkos
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Complicated structured MG solvers can be ported seamlessly
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3-D SMG semicoarsens in the z-direction
and uses xy-plane smoothing by one V-cycle
of 2-D SMG, which semicoarsens in the
y-direction and uses 1-D line smoothing in
the x-direction by Cyclic Reduction
Interpolation operator is computed by
performing a sequence of (simultaneous)
SMG solves (of one dimension lower)
SMG is recursively constructed and is
applied in the solve phase
SMG(3D)→ SMG(2D)→ CR(1D)
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Performance of SMG/PFMG on GPUs

3-D Poisson problem. Problem size 2003 ×Np

Running on ray at LLNL. IBM Power8 + 4 NVIDIA Tesla P100 (Pascal) per
node. CUDA 9.2, IBM XL compilers
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The solve phase of BoomerAMG has been ported to GPUs

GPU kernels for MATVEC and vector operations have been implemented with
CUDA or OpenMP 4.5

with the option of using cuSPARSE and cuBLAS
Several GPU-appropriate smoothers have been implemented

L1 Jacobi and polynomial smoothers
Setup phase is much more complicated. Currently, remains on CPUs with
CUDA unified memory
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Performance of AMG on GPUs

3-D Poisson problem. Problem size 2003 ×Np

Running on ray at LLNL. IBM Power8 + 4 NVIDIA Tesla P100 (Pascal) per
node. CUDA 9.2, IBM XL compilers
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Work in progress: AMG setup on GPUs

ä Main ingredients of classical AMG setup
Compute SoC matrix S. Relatively easy to implement
Compute coarsening C/F . PMIS algorithm has been implemented
Compute interpolation P . Direct interpolation has been implemented
Compute Galerkin product RAP . Most difficult. Two algorithms have been
implemented. Computed in pairs: Q = AP and RAP = RQ
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Distributed SpGEMM in ParCSR

In parallel CSR, each process owns a slice of rows
partitioned into diag and offd parts
Decompose ParCSR A × ParCSR B into local CSR
matrix operations: multiplication, (partial) addition,
splitting, merging, and transposition for ATB

Also wrote CUDA kernels other than multiplication:
with Thrust; much simpler
(GPU) Communications are involved for
sending/receiving external rows, and can be
overlapped with computations

Communication

Boffd

AoffdAoffd Coffd

Boffd

Coffd

Bdiag

CdiagAdiag
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A complete hash-table based SpGEMM algorithm

ä Compute SpGEMM in 4 steps
¶ Row NNZ estimation: to allocate “reasonable-sized” hash tables for ·;
· Symbolic analysis: to compute row counts (bounds) and row pointers ic, and

to allocate “adequate-sized” hash tables for ¸;
¸ Numeric multiplication: to compute the column indices and values in jc and c;
¹ Post-processing: to remove the gaps between rows computed from ¸.
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GPU ParCSR SpGEMM: 3-D 27-pt Laplacians

ä BoomerAMG with HMIS coarsening and ext+i interpolation
ä Compute PTAP on the 1st level of AMG
ä Weak scalability study. Local problem size: 1283

ä ray: IBM Power8 + 4 NVIDIA P100. lassen: IBM Power9 + 4 NVIDIA V100
ä On ray 4 – 64 GPUs (left) and lassen 4 – 128 GPUs (right). y-axis: time
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HYPRE’s memory model

Three conceptual memory locations
HYPRE_MEMORY_HOST, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_SHARED

Mapped to different physical memory in different configurations

HYPRE_MEMORY_HOST HYPRE_MEMORY_DEVICE HYPRE_MEMORY_SHARED
c1 HOST HOST HOST
c2 HOST CUDA DEVICE CUDA DEVICE
c3 HOST CUDA DEVICE CUDA MANAGED

c1: non-GPU configuration
c2: --with-cuda, --with-device-openmp
c3: c2 + --enable-unified-memory

hypre_TAlloc(HYPRE_Complex, n, HYPRE_MEMORY_DEVICE);
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GPU-GPU communications through MPI

MPI_Send/Recv

GPU

CPU

H2D−Copy [omp target update(to:...)]

D2D−Copy [BoxLoop] D2D−Copy [BoxLoop]

D2H−Copy [omp target update(from:...)]
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Memory transfer: GPU→ GPU→ CPU MPI−→ CPU→ GPU→ GPU
GPU aware MPI can help reduce GPU - CPU communication cost
Communication volume in 3-D is much higher than that in 2-D
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Conclusion

The structured and unstructured algebraic multigrid solvers of HYPRE have
been enabled on GPUs by different approaches
Structured MG solvers have both the setup and solve phases on GPUs,
whereas the setup phase of AMG remains on CPUs
AMG setup on GPUs is work in progress. Major components have been
implemented
HYPRE’s abstract memory model enables execution on heterogeneous
platforms
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